
Diffusion networks

Quick maffs and foundations

Jeremi Levesque

November 26, 2024

Université de Sherbrooke

1

Data generation is a long-standing challenge in machine learning.

Easy to do

Generative modelling

2

Variational Autoencoders (VAEs) are extensively used to project

data into a probabilistic latent space from which we can sample to

generate new data.

Figure 1: Weng, Lilian. (2018). From Autoencoder to Beta-VAE.

https://lilianweng.github.io/posts/2018-08-12-vae/

3

Generative Adversarial Networks (GANs) have long been used to

generate fake data:

Figure 2: From Google advanced machine learning course on GANs.

Consulted on Nov. 20 2024.

4

https://developers.google.com/machine-learning/gan/gan_structure

Outline

2 different perspectives to get somewhat similar
conclusions
Score-based generation models

Score matching

Langevin dynamics

Challenges

Multiple noise perturbations

Stochastic differential equations

Denoising diffusion probabilistic models

Forward process

Reverse process

5

Score-based generation models

Problem setting

Dataset {x1, ..., xn}

Real distribution (unknown): pd(x)

We want to model another distribution pm(x ; θ) (θ being the

model’s parameters)

6

Objective

Real distribution (unknown): pd(x)

Modelled distribution: pm(x ; θ)

Find θ such that pm(x ; θ) is as close as possible to pd(x)

7

Finding the weights

Maximum Likehood:

θ̂MLE = argmax
θ

log pm(x ; θ)

Since pm(x ; θ) is a normalized density function, we have:

pm(x ; θ) =
p̃m(x ; θ)

Zθ
where Zθ =

∫
p̃m(x ; θ)dx

p̃m(x ; θ): unnormalized density function

Zθ: normalizing constant (intractable because of
∫
on all data coming

from real distribution)

8

Intuition for score-based generation models

Instead of directly maximizing the likelihood, we find a θ such that

the gradients of the model’s log-likelihood are approx. the same as

the gradients of the data distribution log-likelihood.

sθ(x) = ∇x log pm(x ; θ)

= ∇x log(
p̃m(x ; θ)

Zθ
)

= ∇x log p̃m(x ; θ)−�����∇x logZθ

= ∇x log p̃m(x ; θ)

9

Data samples Data density Scores sθ(x)

10

To minimize the distance between the score and the score of the

real data, we minimize the Fisher divergence between the two

distributions:

Fisher divergence Doesn’t require the two distributions to be

normalized.

θ̂SM = argmin
θ

DF (pd(x)||pm(x ; θ))

= argmin
θ

1

2
Epd (x)

[
∥∇x log pd(x)−∇x log pm(x ; θ)∥2

]
= argmin

θ

1

2
Epd (x)

[
∥∇x log pd(x)− sθ(x)∥2

]

11

Score matching

However, we have no way of computing the ground truth score

∇x log pd(x).

θ̂SM = argmin
θ

1

2
Epd (x)

∥∥∥∥∥∥∇x log pd(x)︸ ︷︷ ︸
intractable

−sθ(x)

∥∥∥∥∥∥
2

There’s a derivation from [2] that allows to get to the following

objective not involving the ground truth score:

1

2
Epd (x)

[
∥∇x log pd(x)− sθ(x)∥2

]
≈

1

2
Epd (x)

[
sθ(x)

2
]
+ Epd (x) [∇xsθ(x)]

We will see a similar derivation later on that is used in practice.

12

Simple sampling

Given that sθ(x) = ∇xpm(xi ; θ), we can follow gradient ascent to

sample from the model’s distribution:

Algorithm 1: Simple sampling

x̃0 ∼ N(0, I)

for i = 1..K do
x̃i+1 ← x̃i + α∇x log pm(x̃i ; θ)︸ ︷︷ ︸

sθ(x̃i)

13

Simple sampling

We iteratively apply x̃i+1 ← x̃i + α∇x log pm(xi ; θ)

Source: Outlier. (Oct 2024). Diffusion Models From Scratch — Score-Based Generative Models Explained.

YouTube.

14

https://www.youtube.com/watch?v=B4oHJpEJBAA&t=2048s
https://www.youtube.com/watch?v=B4oHJpEJBAA&t=2048s

Simple sampling

This is problematic as sampling different points will always give the

same results (e.g. same image).

Source: Outlier. (Oct 2024). Diffusion Models From Scratch — Score-Based Generative Models Explained.

YouTube.

15

https://www.youtube.com/watch?v=B4oHJpEJBAA&t=2048s
https://www.youtube.com/watch?v=B4oHJpEJBAA&t=2048s

Langevin dynamics

It’s almost the same as simple sampling, but with added noise:

Algorithm 2: Langevin dynamics

x̃0 ∼ N(0, I)

for i = 1..K do
ϵ ∼ N (0; 1)

x̃i+1 ← x̃i + α∇x log pm(x̃i ; θ)︸ ︷︷ ︸
sθ(x̃i)

+
√
2αϵ

16

Langevin dynamics

This enables us to get different data samples. The points will still

converge to higher density regions, but with small variations.

Source: Outlier. (Oct 2024). Diffusion Models From Scratch — Score-Based Generative Models Explained.

YouTube.

17

https://www.youtube.com/watch?v=B4oHJpEJBAA&t=2048s
https://www.youtube.com/watch?v=B4oHJpEJBAA&t=2048s

Langevin dynamics

This enables us to get different data samples. The points will still

converge to higher density regions, but with small variations.

Source: Song, Yang. (May 2021). Generative Modeling by Estimating Gradients of the Data Distribution. Yang

Song’s blog. 18

https://yang-song.net/blog/2021/score/
https://yang-song.net/blog/2021/score/

Naive score-based generative modelling

Figure 3: Score-based generative modeling with Langevin dynamics

Song, Yang. (2021). Generative Modeling by Estimating Gradients of the Data Distribution.

https://yang-song.net/blog/2021/score/.

19

Challenges with naive score-based generative modelling

The main pitfall is that the score function is not accurate in

low-density regions. When data reside into a high dimensional

space, it’s very unlikely that we end up in a high-density region.

Figure 4: Estimated scores are only accurate in high density regions.

20

Multiple noise perturbations

To bypass having low-density regions, we can add a certain level

of noise to our data. That create more variability in the data, thus

widening the high-density regions to cover more space.

With more space covered by the data, the score function will be

accurate in more regions.

21

Multiple noise perturbations

However, 2 things to consider:

1. Adding too little noise will cause a inaccurate score

function.

2. Adding too much noise will corrupt the data too much.

22

Multiple noise perturbations

Solution: apply multiple different levels of noise to the data and

learn from that simultaneously.

We perturb the data distribution pd(x) with each of the Gaussian

noise N (0, σ2
o I) with σ1 < σ2 < · · · < σL. Usually L > 1000.

23

Multiple noise perturbations

i-th noise-perturbed distribution:

pσi (x) =

∫
p(y)N (x ; y , σ2

i I)dy

In reality, we simply sample from pσi (x) using:

x + σiz where z ∼ N (0, I)

24

Noise Conditional Score Network

To be able to predict the score on different levels of noise, we

condition the score network on the noise level i .

We train a Noise Conditional Score Network (NCSN):

sθ(x , i) ≈ ∇x log pσi (x)

With an objective weighting all noise levels:

L(θ) =
L∑

i=1

λ(i)Epσi (x)

[
∥∇x log pσi (x)− sθ(x , i)∥2

]

• λ(i): R > 0. Often λ(i) = σ2
i .

• Train exactly like before with score matching and this new

objective.

25

Denoising score matching

As before, we still can’t compute the ground truth score for any

noise level:

L∑
i=1

λ(i)Epσi (x)

∥∥∥∥∥∥∇x log pσi (x)︸ ︷︷ ︸
intractable

−sθ(x , i)

∥∥∥∥∥∥
2

However, we can derive another form similar to the previous score

matching objective:

1

2
Epσi (x̃)

[
∥∇x log pθ(x̃)− sθ(x̃ , i)∥22

]
=

1

2

∫
pθ(x̃)(∇x log pθ(x̃)− sθ(x̃))

2dx̃

26

=
(((((((((1

2

∫
pθ(x̃)(∇x log pσ(x̃))2dx̃︸ ︷︷ ︸
don’t involve sθ (x̃)

+
1

2

∫
pθ(x̃)sθ(x̃)

2dx̃ −
1

2

∫
pθ(x̃)2∇x log pσ(x̃)sθ(x̃)dx̃

=
1

2

∫
pθ(x̃)sθ(x̃)

2dx̃ −
1

2

∫
pθ(x̃)2∇x log pσ(x̃)sθ(x̃)dx̃

=
1

2

∫
pθ(x̃)sθ(x̃)

2dx̃ −
∫
��pθ(x̃)

∇xpσ(x̃)

��pσ(x̃)
sθ(x̃)dx̃

=
1

2

∫
pθ(x̃)sθ(x̃)

2dx̃ −
∫∫

p(x)∇xpσ(x̃|x)sθ(x̃)dxdx̃

=
1

2

∫
pθ(x̃)sθ(x̃)

2dx̃ −
∫∫

p(x)pσ(x̃|x)∇x log pσ(x̃|x)sθ(x̃)dxdx̃

=
1

2
Ex̃∼pθ (x̃)

[
∥sθ(x̃)∥

2
2

]
− Ex∼p(x),x̃∼pσ (x̃) [∇x log pσ(x̃|x)sθ(x̃)]

=
1

2
Ex∼p(x),x̃∼pθ (x̃)

[
∥sθ(x̃)∥

2
2

]
− Ex∼p(x),x̃∼pσ (x̃) [∇x log pσ(x̃|x)sθ(x̃)]

=
1

2
Ex∼p(x),x̃∼pθ (x̃)

[
∥sθ(x̃)∥

2
2 − 2∇x log pσ(x̃|x)sθ(x̃)

]
=

1

2
Ex∼p(x),x̃∼pθ (x̃)

[
∥sθ(x̃)∥

2
2 − 2∇x log pσ(x̃|x)sθ(x̃) + ∥∇x log pσ(x̃|x)∥22 − ∥∇x log pσ(x̃|x)∥22

]
=

1

2
Ex∼p(x),x̃∼pθ (x̃)

[
∥sθ(x̃) − ∇x log pσ(x̃|x)∥22 − ∥∇x log pσ(x̃|x)∥22

]
=

1

2
Ex∼p(x),x̃∼pθ (x̃)

[
∥sθ(x̃) − ∇x log pσ(x̃|x)∥22

]
−
((((((((((((
Ex∼p(x),x̃∼pθ (x̃)

[
∥∇x log pσ(x̃|x)∥22

]
︸ ︷︷ ︸

don’t involve sθ (x̃)

=
1

2
Ex∼p(x),x̃∼pθ (x̃)


∥∥∥∥∥∥∥sθ(x̃) − ∇x log pσ(x̃|x)︸ ︷︷ ︸

why is this better?

∥∥∥∥∥∥∥
2

2


27

1

2
Ex∼p(x),x̃∼pθ (x̃)

[
∥sθ(x̃) − ∇x log pσ(x̃|x)∥22

]

x̃ = x + ϵ corresponds to pσ(x̃|x). We have:

pσ(x̃|x) =
1

(2π)d/2σ2
e
− 1

2σ2 ∥x̃−x∥2

∇x log pσ(x̃|x) = ∇x log

[
1

(2π)d/2σ2
e
− 1

2σ2 ∥x̃−x∥2
]

=
�������
∇x log

[
1

(2π)d/2σ2

]
+ ∇x log

[
e
− 1

2σ2 ∥x̃−x∥2
]

= ∇x log

[
e
− 1

2σ2 ∥x̃−x∥2
]

= ∇x
−1

2σ2
∥x̃ − x∥2

= −
2

2σ2
(x̃ − x)

= −
1

σ2
(x̃ − x)

Since x̃ = x + ϵ

= −
1

σ2
(�x + ϵ − �x)

= −
ϵ

σ2

28

Replacing the objective we found:

1

2
Ex∼p(x),x̃∼pθ(x̃)

[∥∥∥∥sθ(x̃)−∇x log pσ(x̃ |x)︸ ︷︷ ︸
∥∥∥∥2
2

]

=
1

2
Ex∼p(x),x̃∼pθ(x̃)

[∥∥∥sθ(x̃) + ϵ

σ2

∥∥∥2
2

]

Making it tractable where sθ(x̃) is trying to predict − ϵ
σ2 (to

remove the noise)!

29

Annealed Langevin Dynamics

Sampling with NCSN: Same method as Langevin dynamics, but

with a twist: each step, the scores are predicted from a different

noise level.

Algorithm 3: Annealed Langevin dynamics

x0 ∼ N(0, I)

for i = L..1 do
ϵ ∼ N (0; 1)

zt ∼ N (0; 1)

αi ← ϵ
σ2
i

σ2
L

x̃i+1 ← x̃i + αi ∇x log pm(xi ;σi , θ)︸ ︷︷ ︸
sθ(xi ,i)

+
√
2αizt

Important: noise is decreasing at each iteration (since

σL > σL−1 > · · · > σ1)
30

Annealed Langevin Dynamics

31

Annealed Langevin Dynamics

32

Stochastic differential equations

With NCSN, we have a discrete and finite sequence of noise

levels that the model denoise data with. Most of the time, the

sequence length L is fixed to at least 1000 steps.

33

Stochastic differential equations

In general, an Ordinary Differential Equation (ODE) has the

following formulation:

dx = f (x , t)dt

which describes the evolution of a deterministic system over time.

34

Stochastic differential equations

Now, if the process is random, we can analyse it’s evolution with

Stochastic differential equations (SDEs):

dx = f (xt , t)dt + g(t)dwt

where

• dwt is infinitesimal noise.

• f (xt , t) is the drift coefficient (deterministic part).

35

Stochastic differential equations

The forward SDE perturbs the data on a continuous time-scale:

dx = f (xt , t)dt + g(t)dwt

36

Stochastic differential equations

It turns out that if you do the derivation, the reverse process of an

SDE in general is the following:

dx =
[
f (xt , t)− g2(t)∇x log pt(x)

]
dt + g(t)dw

=
[
f (xt , t)− g2(t)sθ(x , t)

]
dt + g(t)dw

We just have to train a Time-dependent score-based model

sθ(x , t) ≈ ∇x log pt(x) which is basically the same as the NCSN

sθ(x , i) ≈ ∇x log pσi (x). Instead of conditioning on a specific

schedule time-step, we condition on the continuous time t.

37

Stochastic differential equations

The reverse SDE starts from noise from a prior distribution

(gaussian) to the data:

dx =
[
f (xt , t)− g2(t)sθ(x , t)

]
dt + g(t)dw

38

Stochastic differential equations

39

Stochastic differential equations

To train that Time-dependent score-based model, we use the

following objective:

Et∈U(0,T)Ept(x)

[
λ(t) ∥∇x log pt(x)− sθ(x , t)∥22

]

• U(0,T) a uniform distribution over timesteps

• Weighting function λ(t) ∝ 1

E
[
∥∇x(t) log p(x(t)|x(0))∥22

]

40

Stochastic differential equations

We now have the reverse SDE:

dx =
[
f (xt , t)− g2(t)sθ(x , t)

]
dt + g(t)dw

How do we solve it? (Solving means to get from t = T (noise) to

t = 0 (data))

1. Train the time-dependent score-based model sθ(x , t)

2. Use any numerical SDE solver to solve the SDE (e.g.

Euler-Maruyama).

41

The Euler-Maruyama discretizes the SDE into discrete time-steps

(similar to Langevin dynamics).

Algorithm 4: Example SDE solver: Euler-Maruyama

∆t ≈ 0 (very small);

t ← T ;

zt ∼ N (0, I);

repeat

∆x ←
[
f (x , t)− g2(t)sθ(x , t)

]
∆t + g(t)

√
|∆t|zt ;

x ← x +∆x ;

t ← t +∆t;

until t ≈ 0;

Benefits:

• We can solve using an arbitrary number of denoising steps

with the same model.

• The SDE solver is independent of the model.

42

43

This formulation of score-based models bring:

• Exact likelihood computation (with probability flow ODE).

• Better sampling methods (but still much slower than GANs).

• Link the score-based models to DDPM.

44

45

Denoising diffusion probabilistic

models

Diffusion models at high-level

x0 ... xt−1 xt ... xT

q(xt |xt−1)

pθ(xt−1|xt)

q(xt−1|xt)

The real q(xt−1|xt) reverse function is unknown.

We approximate it with a learned function pθ(xt−1|xt).

46

Forward process

The forward process gradually adds gaussian noise to the data

during training.

1. Sample a data point x0 from the real data x0 ∼ qd(x)

2. Add gaussian noise with variance βt to xt−1 to produce a new

latent variable q(xt |xt−1) where

q(xt |xt−1) = N (xt ;
√
1− βtxt−1, βt I)

47

Forward process

Problem: Calculating xt from x0 iteratively is expensive (especially

if it’s an image with t > 1000).

Solution: Reparametrization trick!

From q(xt |xt−1) = N (xt ;
√
1− βtxt−1, βt I) to z = µ+ σ ⊙ ϵ

48

Forward process

Solution: Reparametrization trick!

Let αt = 1− βt and αt =
∏T

t=1 αi

xt = N (xt ;
√

1− βtxt−1, βt I)

=
√

1− βtxt−1 +
√

βtϵt−1

=
√
αtxt−1 +

√
1− αtϵt−1

=
√
αt(
√
αt−1xt−2 +

√
1− αt−1ϵt−2) +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
αt(1− αt−1)ϵt−2 +

√
1− αtϵt−1

=
√
αtαt−1xt−2 +

√
1− αtαt−1ϵt−2

= ... replace xt−2 and so on ...

=
√
αtx0 +

√
1− αtϵt

q(xt |x0) = N (xt ;
√
αtx0, (1− αt)I)

49

Forward process

• Recall: αt = 1− βt and βt is an hyperparameter.

• We can precompute αt (not expensive).

• With q(xt |x0) = N (xt ;
√
αtx0, (1− αt)I) we can sample xt

from x0 in one step.

50

How to parametrize βt?

The choice of the noise schedule can be arbitrary as long as there’s

a near-linear change in the middle and very subtle changes

around t=0 and t=T.

• Linear schedule (perturbs image too quickly initially).

E.g. from β1 = 10−4 to βT = 0.02.

• Cosine schedule (showed better results)

βt = clip(1− αt

αt−1
, 0.999) with αt =

f (t)

f (0)

and f (t) = cos

(
t/T + s

1 + s

π

2

)2

51

Reverse process

If we could sample from q(xt−1|xt) (intractable), we could recreate

an image from a randomly sampled xT from a gaussian.

x0 ... xt−1 xt ... xT
pθ(xt−1|xt)

q(xt−1|xt)

If βt is small enough, q(xt−1|xt) is gaussian. So we can

approximate it with:

pθ(xt−1|xt) = N (xt−1;µθ(xt , t),Σθ(xt , t))

• µθ(xt , t) is learned.

• In practice (for DDPM), Σθ(xt , t) = σ2
t I which comes from a

fixed variance schedule (not learned).
52

Reverse process

Objective: minimize − log pθ(x0)

Issue: pθ(x0) is intractable as it depends on all previous timesteps

x0, x1, ..., xT−1, xT .

53

Variational Lower Bound

Instead of minimizing − log pθ(x0), we minimize the variational

lower bound:

− log(pθ(x0)) ≤ − log pθ(x0) + DKL(q(x1:T |x0)||pθ(x1:T |x0))

• We add the KL (always ≥ 0) since we are minimizing.

• Still depends on − log pθ(x0)! We have to reformulate.

54

Variational Lower Bound

= − log(pθ(x0))

≤ − log pθ(x0) + DKL(q(x1:T |x0)||pθ(x1:T |x0))

= − log pθ(x0) + Ex1:T∼q(x1:T |x0)

[
log

q(x1:T |x0)
pθ(x1:T |x0)

]
(Def. KL)

= − log pθ(x0) + Eq

log q(x1:T |x0)
pθ(x0:T)
pθ(x0)

 (Bayes)

= ������− log pθ(x0) + Eq

[
log

q(x1:T |x0)
pθ(x0:T)

+�����log pθ(x0)

]
LVLB = Eq

[
log

q(x1:T |x0)
pθ(x0:T)

]
q(x1:T |x0) is the forward process, we can compute it.

pθ(x0:T) is not analytically computable.
55

Variational Lower Bound

We have to reformulate LVLB even more to make it computable:

LVLB = Eq

[
log

q(x1:T |x0)
pθ(x0:T)

]
= Eq

[
log

∏T
t=1 q(xt |xt−1)

pθ(xT)
∏T

t−1 pθ(xt−1|xt)

]
(Def. q and pθ)

= Eq

[
− log pθ(xT) +

T∑
t=1

log
q(xt |xt−1)
pθ(xt−1|xt)

]
(Log prop.)

= Eq

[
− log pθ(xT) +

T∑
t=2

log
q(xt |xt−1)
pθ(xt−1|xt)

+ log
q(x1|x0)
pθ(x0|x1)

]
(First term)

Details

q(xt |xt−1)
bayes
=

q(xt−1|xt)q(xt)
q(xt−1)

=⇒ q(xt−1|xt , x0)q(xt |x0)
q(xt−1|x0)

Condition on x0 to

lower the variance.

56

= Eq

[
− log pθ(xT) +

T∑
t=2

log
q(xt |xt−1)

pθ(xt−1|xt)
+ log

q(x1|x0)
pθ(x0|x1)

]

= Eq

[
− log pθ(xT) +

T∑
t=2

log
q(xt−1|xt , x0)
pθ(xt−1|xt)

q(xt |x0)
q(xt−1|x0)

+ log
q(x1|x0)
pθ(x0|x1)

]

= Eq

[
− log pθ(xT) +

T∑
t=2

log
q(xt−1|xt , x0)
pθ(xt−1|xt)

+
T∑
t=2

log
q(xt |x0)
q(xt−1|x0)

+ log
q(x1|x0)
pθ(x0|x1)

]

Additional simplification

T∑
t=2

log
q(xt |x0)
q(xt−1|x0)

= log
T∏
t=2

q(xt |x0)
q(xt−1|x0)

= log ����q(x2|x0)����q(x3|x0)q(x4|x0)...
q(x1|x0)����q(x2|x0)����q(x3|x0) ...

= log
q(xT |x0)
q(x1|x0)

57

= Eq

[
− log pθ(xT) +

T∑
t=2

log
q(xt−1|xt , x0)
pθ(xt−1|xt)

+
T∑
t=2

log
q(xt |x0)
q(xt−1|x0)

+ log
q(x1|x0)
pθ(x0|x1)

]

= Eq

[
− log pθ(xT) +

T∑
t=2

log
q(xt−1|xt , x0)
pθ(xt−1|xt)

+ log
q(xT |x0)
q(x1|x0)

+ log
q(x1|x0)
pθ(x0|x1)

]

= Eq

[
− log pθ(xT) +

T∑
t=2

log
q(xt−1|xt , x0)
pθ(xt−1|xt)

+ log
q(xT |x0)����q(x1|x0)
pθ(x0|x1)����q(x1|x0)

]

= Eq

[
− log pθ(xT) +

T∑
t=2

log
q(xt−1|xt , x0)
pθ(xt−1|xt)

+ log
q(xT |x0)
pθ(x0|x1)

]

= Eq

[
− log pθ(xT) +

T∑
t=2

log
q(xt−1|xt , x0)
pθ(xt−1|xt)

+ log q(xT |x0)− log pθ(x0|x1)

]

= Eq

[
log

q(xT |x0)
pθ(xT)

+
T∑
t=2

log
q(xt−1|xt , x0)
pθ(xt−1|xt)

− log pθ(x0|x1)

]

= Eq[DKL(q(xT |x0)||pθ(xT))︸ ︷︷ ︸
(1)

+
T∑
t=2

DKL(q(xt−1|xt , x0)||pθ(xt−1|xt))︸ ︷︷ ︸
(2)

− log pθ(x0|x1)︸ ︷︷ ︸
(3)

]

58

(1) DKL(q(xT |x0)||pθ(xT))

DKL(q(xT |x0)||pθ(xT))

• q(xT |x0): no learnable parameter AND converges to isotropic

gaussian.

• pθ(xT): random noise sampled from an isotropic gaussian.

We can ignore this term (1)!

We are left with:

LVLB = Eq[
T∑
t=2

DKL(q(xt−1|xt , x0)||pθ(xt−1|xt))︸ ︷︷ ︸
(2)

− log pθ(x0|x1)︸ ︷︷ ︸
(3)

]

59

(2)
∑T

t=2DKL(q(xt−1|xt , x0)||pθ(xt−1|xt))

Recall that estimating q(xt−1|xt) is intractable. However, by
conditioning on x0, the term in the above equation can be
computed:

Let q(xt−1|xt , x0) = N (xt−1; µ̃(xt , x0), β̃I)

q(xt−1|xt , x0) =
q(xt |xt−1, x0)q(xt−1|x0)

q(xt |x0)

Replace each term by their gaussian form w/o the coeffcient.

∝ exp

[
−1

2

(
(xt −

√
αtxt−1)

2

√
βt

2 +
(xt−1 −

√
αt−1x0)

2

√
1− αt−1

2 − (xt −
√
αtx0)

2

√
1− αt

2

)]

= exp

[
−1

2

(
(xt −

√
αtxt−1)

2

βt
+

(xt−1 −
√
αt−1x0)

2

1− αt−1
− (xt −

√
αtx0)

2

1− α

)]

60

= exp

[
−1

2

(
(xt − √

αtxt−1)
2

βt
+

(xt−1 −
√

αt−1x0)
2

1 − αt−1

−
(xt −

√
αtx0)

2

1 − α

)]

= exp

[
−1

2

(
x2t − 2

√
αtxtxt−1 + αtx

2
t−1

βt
+

x2t−1 − 2
√

αt−1xt−1x0 + αt−1x
2
0

1 − αt−1

−
(xt −

√
αtx0)

2

1 − α

)]

= exp

[
−1

2

(
x2t

βt
−

2
√

αtxtxt−1

βt
+

αtx
2
t−1

βt
+

x2t−1

1 − αt−1

−
2
√

αt−1xt−1x0

1 − αt−1

+
αt−1x

2
0

1 − αt−1

−
(xt −

√
αtx0)

2

1 − α

)]
Discard/regroup terms in black that don’t depend on xt−1

= exp

[
−1

2

(
−

2
√
αtxtxt−1

βt
+

αtx
2
t−1

βt
+

x2t−1

1 − αt−1

−
2
√

αt−1xt−1x0

1 − αt−1

+ C(xt , x0)

)]

We factorize x2t−1 and xt−1

= exp

[
−1

2

(
αt

βt
+

1

1 − αt−1

)
x2t−1 − 2

(√
αtxt

βt
+

√
αt−1x0

1 − αt−1

)
xt−1 + C(xt , x0)

]

61

exp

[
−1

2

(
αt

βt
+

1

1− αt−1

)
x2
t−1 − 2

(√
αtxt
βt

+

√
αt−1x0

1− αt−1

)
xt−1 + C(xt , x0)

]
Following the gaussian distribution form (omitting coefs) of

N (xt−1, µ̃(xt , x0), β̃I)

N (xt−1, µ̃(xt , x0), β̃I) = exp

[
−1

2

(xt−1 − µ̃(xt , x0))
2

β̃

]
= exp

[
−1

2

x2
t−1 − 2xt−1µ̃(xt , x0) + µ̃(xt , x0)

2

β̃

]
= exp

[
−1

2

(
x2
t−1

β̃
− 2xt−1µ̃(xt , x0)

β̃
+ C(xt , x0)

)]
= exp

[
−1

2

(
1

β̃
x2
t−1 −

2µ̃(xt , x0)

β̃
xt−1 + C(xt , x0)

)]
By plugging the formulation at the top into the gaussian form, we can find

µ̃(xt , x0) and β̃.

62

Recall that βt = 1− αt . We begin by finding β̃:

1

β̃
=

(
αt

βt
+

1

1− αt−1

)
β̃ =

1
αt
βt

+ 1
1−αt−1

=
1

αt−αtαt−1+βt

βt(1−αt−1)

=
βt(1− αt−1)

αt − αtαt−1 + βt

=
1− αt−1

αt − αt + βt
βt

=
1− αt−1

��αt − αt + 1−��αt
βt

=
1− αt−1
1− αt

βt

63

Now, for µ̃(xt , x0), we have:

2µ̃(xt , x0)

β̃t
= 2

(√
αt

βt
xt +

√
αt−1

1− αt−1
x0

)
µ̃(xt , x0) =

(√
αt

βt
xt +

√
αt−1

1− αt−1
x0

)
β̃t

=

(√
αt

βt
xt +

√
αt−1

1− αt−1
x0

)
1− αt−1
1− αt

βt

=

√
αt(1− αt−1)

(1− αt)
xt +

√
αt−1βt

(1− αt)
x0

Reparametrization (again)
Using the reparametrization trick of the forward process, we can reparametrize

x0 as a function of xt :

xt =
√
αtx0 +

√
1− αtϵt =⇒ x0 =

1√
αt

(xt −
√
1− αtϵt)

64

=

√
αt(1− αt−1)

(1− αt)
xt +

√
αt−1βt

(1− αt)
x0

By substituing it into the equation, we get:

=

√
αt(1− αt−1)

(1− αt)
xt +

√
αt−1βt

(1− αt)

1√
αt

(xt −
√
1− αtϵt)

... don’t understand how to solve this part ...

µ̃(xt , x0) =
1
√
αt

(
xt −

1− αt√
1− αt

ϵt

)

65

To recap

To recap, we were trying to make sense of the second term (2) in

our variational lower bound:

LVLB = Eq[
T∑
t=2

DKL(q(xt−1|xt , x0)||pθ(xt−1|xt))︸ ︷︷ ︸
(2)

− log pθ(x0|x1)︸ ︷︷ ︸
(3)

]

q(xt−1|xt , x0) is our ’target’ gaussian that we want pθ to

approximate. We just found a way to calculate it.

q(xt−1|xt , x0) = N (xt−1; µ̃(xt , x0), β̃I)

= N (xt−1;
1
√
αt

(
xt −

1− αt√
1− αt

ϵt

)
, β̃I)

66

To recap

To recap, we were trying to make sense of the second term (2) in

our variational lower bound:

LVLB = Eq[
T∑
t=2

DKL(q(xt−1|xt , x0)||pθ(xt−1|xt))︸ ︷︷ ︸
(2)

− log pθ(x0|x1)︸ ︷︷ ︸
(3)

]

pθ(xt−1|xt) is the distribution we’re trying to model.

pθ(xt−1|xt) = N (xt−1;µθ(xt , t),Σθ(xt , t))

= N (xt−1;µθ(xt , t), σ
2
t I)

In practice (for DDPM), σ2
t = βt or σ

2
t = β̃t gives similar results.

67

N.B.: In a later improved version, [4] proposed to parametrize and

learn the reverse process variance schedule instead of having it

fixed. They proposed an interpolation between βt and β̃t by

learning a mixing parameter θ:

Σθ(xt , t) = exp(θ log βt + (1− θ) log β̃t)

and as we found earlier, β̃t =
1− αt−1
1− αt

βt which means

= exp(θ log βt + (1− θ) log

[
1− αt−1
1− αt

βt

]
)

But for now, we’ll stick with a reverse process of fixed variance

schedule.

68

Training loss

Since the variance of pθ(xt−1|xt) is fixed, authors chose to simply

minimize the distance between µθ(xt , t) and µ̃(xt , t):

Lt = Ex0,ϵ

[
1

2 ∥
∑

θ(xt , t)∥
2
2

∥µ̃t(xt , x0)− µθ(xt , t)∥2
]

However, we know that

µ̃t(xt , x0) =
1
√
αt

(
xt −

1− αt√
1− αt

ϵt

)
And we also have access to xt , at and αt during the training

of µθ. We can then reparametrize µθ to only predict the noise ϵt

instead:

µθ(xt , t) =
1
√
αt

(
xt −

1− αt√
1− αt

ϵθ(xt , t)

)
69

The training loss then becomes

Lt = Ex0,ϵ

[
1

2
∥∥∑

θ

∥∥2
2

∥µ̃t(xt , x0)− µθ(xt , t)∥2
]

= Ex0,ϵ

[
1

2
∥∥∑

θ

∥∥2
2

∥∥∥∥ 1√
αt

(xt −
1− αt√
1− αt

ϵt)−
1√
αt

(xt −
1− αt√
1− αt

ϵθ(xt , t))

∥∥∥∥2
]

= Ex0,ϵ

[
(1− αt)

2

2αt(1− αt)
∥∥∑

θ

∥∥2
2

∥ϵt − ϵθ(xt , t)∥2
]

Empirically, ignoring the weighting term provides a more stable training for the

diffusion model:

Lt = Ex0,ϵ

[
∥ϵt − ϵθ(xt , t)∥2

]
= Ex0,ϵ

[∥∥ϵt − ϵθ(
√
αtx0 +

√
1− αtϵt , t)

∥∥2]

70

Algorithm 5: Training

repeat

Sample x0 ∼ q(x0);

Sample t ∼ Uniform({1, . . . ,T});
Sample ϵ ∼ N (0, I);

Take gradient descent step on ∇θ

∥∥ϵt − ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵt , t

)∥∥2;
until converged ;

Algorithm 6: Sampling

Sample xT ∼ N (0, I)

for t = T , . . . , 1 do

if t > 1 then

Sample z ∼ N (0, I)

else

z = 0

xt−1 = 1√
αt

(
xt − 1−αt√

1−ᾱt
ϵθ(xt , t)

)
+ σtz

return x0

71

(3) − log pθ(x0|x1)

As mentionned before, the overall objective we’re trying to

minimize is the following:

LVLB = Eq[
T∑
t=2

DKL(q(xt−1|xt , x0)||pθ(xt−1|xt))︸ ︷︷ ︸
(2)

− log pθ(x0|x1)︸ ︷︷ ︸
(3)

]

We know how to minimize (2) with Lt . But, what about (3)? We

can’t forget about it, otherwise we won’t know how to get the

image from x1 to x0 (the final denoising step).

72

(3) − log pθ(x0|x1)

The final denoising step is modelled by another independent discrete

decoder, with D being the data dimension (e.g. nb of pixels in an image):

pθ(x0|x1) =
D∏
i=1

∫ δ+(x i0)

δ−(x i0)

N (x ;µi
θ(x1, 1), σ

2
1)dx

δ−(x) =

∞ if x = 1

x + 1
255

if x < 1
δ+(x) =

−∞ if x = −1

x − 1
255

if x > −1

In summary:

1. Calc. the distribution for the i-th pixel of x0 given the image x1.

2. Calc. the likelihood of the pixel value x i
0 given the distribution.

3. Multiply the likelihood of all pixels to get the final likelihood.

73

74

Recap on the training objective

LVLB = Eq[
T∑
t=2

DKL(q(xt−1|xt , x0)||pθ(xt−1|xt))︸ ︷︷ ︸
(2)

− log pθ(x0|x1)︸ ︷︷ ︸
(3)

]

We now have a way to compute (2) and (3), completing the

training objective of the foundation of diffusion models:

• (2): Train an independent decoder:

pθ(x0|x1) =
∏D

i=1

∫ δ+(x i0)

δ−(x i0)
N (x ;µi

θ(x1, 1), σ
2
1)dx

• (3): Train the diffusion model with the loss:

Lt = Ex0,ϵ

[∥∥ϵt − ϵθ(
√
αtx0 +

√
1− αtϵt , t)

∥∥2]
75

Conclusion

We have seen 2 different perspectives on generative modeling using

diffusion:

1. Score-based generative models: which consists of

1. Modelling the ”score” which is the gradients of the

log-likelihood of the data ∇x log p(x) using score matching.

2. Using the gradients with Langevin dynamics to sample new

data.

3. Learning from multiple levels of noise perturbation to improve

the accuracy of scores in the data space.

4. Learning from an infinite number of noise levels using SDEs.

76

Conclusion

We have seen 2 different perspectives on generative modeling using

diffusion:

2. Denoising Diffusion Probabilistic Models (DDPM): which

consists of

1. A forward process iteratively adds noise to the data.

2. A reverse process modelled by a model pθ(xt−1|xt), that can
generate data (images) from a prior distribution.

3. Training the reverse process using a variational lower bound.

77

From here

Most subsequent developments on diffusion models focus on

improving the methods presented above with:

1. Faster and more efficient sampling.

2. Handling different structures of data.

3. More accurate likelihood and density estimation.

78

Some keywords I haven’t covered in this presentation:

• Conditional generation (with/without guidance from

classifiers)

• Scale up resolution.

• Latent diffusion models.

• Speed up sampling process.

• Diffusion models for video generation.

79

References

[1] Jonathan Ho, Ajay Jain, and Pieter Abbeel. “Denoising diffusion
probabilistic models”. In: Advances in neural information processing systems
33 (2020), pp. 6840–6851.

[2] Aapo Hyvärinen and Peter Dayan. “Estimation of non-normalized
statistical models by score matching.”. In: Journal of Machine Learning
Research 6.4 (2005).

[3] Tero Karras et al. “Elucidating the design space of diffusion-based
generative models”. In: Advances in neural information processing systems 35
(2022), pp. 26565–26577.

[4] Alexander Quinn Nichol and Prafulla Dhariwal. “Improved denoising
diffusion probabilistic models”. In: (2021), pp. 8162–8171.

[5] Jiaming Song, Chenlin Meng, and Stefano Ermon. “Denoising diffusion
implicit models”. In: arXiv preprint arXiv:2010.02502 (2020).

[6] Yang Song and Stefano Ermon. “Generative modeling by estimating
gradients of the data distribution”. In: Advances in neural information
processing systems 32 (2019).

[7] Yang Song and Stefano Ermon. “Improved techniques for training
score-based generative models”. In: Advances in neural information
processing systems 33 (2020), pp. 12438–12448.

[8] Yang Song et al. “Score-based generative modeling through
stochastic differential equations”. In: arXiv preprint arXiv:2011.13456
(2020).

[9] Lilian Weng. “What are diffusion models?” In: lilianweng.github.io (July
2021). url:
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/.

[10] Ling Yang et al. “Diffusion models: A comprehensive survey of
methods and applications”. In: ACM Computing Surveys 56.4 (2023),
pp. 1–39.

80

https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

	Score-based generation models
	Score matching
	Langevin dynamics
	Challenges
	Multiple noise perturbations
	Stochastic differential equations

	Denoising diffusion probabilistic models
	Forward process
	Reverse process

	References

